ATTACKS ON ICS

Ludwig Seitz
(inspired by a course by Justin Searle)
June 2018

RISE ICT
SICS
Control Systems

ICS/SCADA infrastructure -> Controller -> Sensor

Controller -> Actuator
ICS / SCADA

- Industrial Control System
 - General term
 - Systems controlling industrial production

- Supervisory Control And Data Acquisition
 - Hierarchical, distributed architecture
 - High-level management
 - Typically event-driven
 - Focused on data collection

[Image: Wikimedia Commons: Sunilshamnur]
- Digital Control System
 - Controls single factory or plant
 - Process-driven
 - Focused on control
• Programmable Logic Controller
 – Generic, programmable for any purpose
 – Usually runs a real-time operating system
RTU

- Remote Terminal Unit
 - Network gateway
 - Generally used to communicate with multiple field devices such as PLCs
• Human-Machine Interface
 – Used by the operators to observe and interact with a controlled process
 – Range from simple displays with buttons to PCs running advanced control software
Data Historian

- Centralized data repository
 - Collects time-stamped data
 - Input from controllers, HMIs etc.
 - Used for data analysis
 - Main reason why Business IT and Process IT cannot be fully air-gapped
ICS architecture

- Internet DMZ
 - Web Server
 - Mail Server

- Enterprise Level
 - Business Systems
 - Desktop PCs

- Supervisory Level
 - Historian
 - Main HMI
 - Engineering Workstation

- Field Level
 - HMI
 - RTU
 - PLC
Attacking ICS

- Usually starts with classical attacks
 - Social engineering
 - Flaws in the company IT security
 - Insider
- Use the foothold to propagate
 - Move from office IT to operation IT
 → e.g. the through the historian
- ICS part requires deep specialist knowledge
ICS Attack Targets

- Engineering stations
 - Project files (Human readable variable names)
- HMI
 - Fool the operator to think all is fine
- Gateways
 - Intercept and manipulate control traffic
Attack Methodology

• Gather information
 – Public sources (website, news, social media)
 – Scanning and monitoring (nmap, wireshark)

• Analysis
 – Learn how the process works
 – Learn different entities in the system

• Exploit
 – Use the results to gain a foothold
 – Pivot to new subsystems
 – Cover your tracks
No free lunch!

- Delivering a targeted ICS attack is hard!
 - ICS has many safety features
 - Operators good at recognizing abnormal states
 - ICS equipment is fragile
 → Attackers need intimate knowledge of the process to avoid detection

- ICS attack tools show a high level of sophistication
 - Havex malware scans for OPC resources
 - Triton malware targeting system for critical control & safety
Case Study: Havex

1. Attack

2. Software updates + Havex

3. Data exfiltration

4. ???

SCADA system manufacturer

"Waterhole"

Dragonfly

Command & Control Server

Internet

SCADA systems
Case Study: Havex

- Dragonfly: Russian hacker group
- Havex: Remote Access Trojan (RAT)
 - Targets ICS/SCADA systems
 - Communicates with a Command & Control Server
 - Scans for connected network resources using OPC standard
- “Waterhole” attack (2013)
 - Hackers attacked ICS/SCADA manufacturers
 - Customers got infected software updates
- >1000 European / North American energy firms infected
TACK!

Ludwig Seitz
ludwig.seitz@ri.se
+46 703 49 9251

RESEARCH Institutes of Sweden
RISE ICT
SICS
Links

• Homeland Security ICS-CERT
 - https://ics-cert.us-cert.gov/Recommended-Practices
 - https://ics-cert.us-cert.gov/monitors

• MSB
 - https://www.msb.se/ics
 - https://www.cert.se/

• Justin Searle
 - https://www.samuraistfu.org